
Invisible Internet Network Protocol (I2NP)
Revision 0.9, 28 August, 2003

http://www.invisiblenet.net/ info@invisiblenet.net
jrandom@invisiblenet.net

Table of Contents
1.Network Overview.. 2

Goals..2
Assumptions.. 3
Network Components.. 3
Protocol Scope...4
Threat Model... 5

2.Communication Scenarios...6
Active Scenarios.. 6

Router Starts Up..6
Router Leaves Network.. 6
Destination Established a Session with a Router..6
Router Rebuilds Tunnels.. 7
Tunnel Fails.. 7
Destination Ends a Session with a Router.. 7
Destination Sends a Message..8

Passive Scenarios...9
Router Receives a Request for Tunnel Participation.. 9
Router Receives a Garlic Message..10
Router Rotates its Addresses.. 10
Router Receives a Network Database Message ... 10

3.Network Database... 11
Kademlia Variations.. 11
Modified Kademlia Protocol Summary...11

Key Closeness and Location... 11
Network Database Initialization..12
Key Space Management..12
Key Lookups... 12
Anonymity.. 12

4.Messages... 13
Network Database Messages... 13
Tunnel Related Messages.. 15
Miscellaneous Messages..17

5.Performance Monitoring and Tuning.. 18
6.Implementation Details... 19

InvisibleNet – www.invisiblenet.net Page 1/20

1.Network Overview

Goals
InvisibleNet has formed the Invisible Internet Project (I2P) to support the efforts of
those trying to build a more free society by offering them an uncensorable,
anonymous, and secure communication system. I2P is a development effort producing
a variable latency1, fully distributed2, autonomous3, scalable4, anonymous5, resilient6,
and secure7

 network. The goal is to be able to operate successfully in arbitrarily hostile
environments – even when an organization with unlimited financial and political
resources attacks it. All aspects of the network are open source and available without
cost, as this should both assure the people using it that the software does what
InvisibleNet says it does, as well as enable others to contribute and improve upon it to
make use of newer and better ideas to defeat more aggressive attempts to stifle free
speech.

I2P is a peer to peer network that takes advantage of the anonymity and security of
mixnets – both free route and mix cascades – the performance, scalability, and
resilience of distributed hash tables, and the global interoperability of the Internet.
Communication between individuals does not need to expose the location, identity, or
contents of those communicating – to each other or to a third party attempting to
monitor their activity, even if the third party has unlimited resources dedicated to
doing so. Supporting those for whom even the use of this software is deemed illegal
is an essential goal which will be achieved through allowing trusted peers, strong
cryptography, rotating and expiring physical transport addresses, non traditional
communication protocols, and steganographic techniques.

The aim is to provide information theoretic anonymity in addition to the engineering
providing computational anonymity, as rotating and expiring physical addresses can
by their very nature lose the ability to be tracked after the fact, and trusted routers can
be set up to self destruct after a period of time, taking any logs or trace of its
installation with it. This works in the same way that a statement such as “Meet me in
the garage at 3am tonight and wear a blue hat” does not provide any information as to
the location of the target after the scheduled meeting takes place. These rotating and
expiring physical transport addresses imply an additional layer of indirection and
therefore reduce the latency of the communication so their use should only be used
where they make sense, and the same goes for trusted links.

I2P itself isn't an application that people will use in the traditional sense. To
understand where I2P fits into the realm of software systems, think of it as a
replacement for the Internet Protocol (IP), not as a specific file sharing, instant

1 Variable latency: while every participant has the ability to adjust the response time of their system to
meet their anonymity requirements, current models show that I2P will support strong anonymity
with up to sub-second latency in a 5+ million node network.

2 Distributed: no centralized point of failure, control, or monitoring.
3 Autonomous: everyone is empowered to operate on the network, and even run parallel networks.
4 Scalable: bandwidth, throughput and latency do not significantly suffer as the network grows.
5 Anonymous: individuals control the disclosure of information about themselves.
6 Resilient: the network can operate and evolve in the face of attacks and failures.
7 Secure: sufficient levels of information integrity and confidentiality are available.

InvisibleNet – www.invisiblenet.net Page 2/20

messaging, publishing, or other communication application that runs on top of it.
Rather than sending information across a socket or out on a datagram from one fixed
location (IP address) to another, you simply send information out on the network to a
“destination” (basically a public key), and the I2P software “routers” securely and
scalably use whatever means are available to deliver the message, taking into account
appropriate anonymity, performance, bandwidth, and reliability constraints, trust
metrics, and economic models. An application doesn't need to know where the
destination of that message is located, or even how it gets there (and in fact, it can't
know either). Inversely, when receiving a message sent over I2P, an application
doesn't know where it came from, or even who sent it, unless the sender includes that
information. More than that, the machines that route the message from its origin to its
final destination have no idea who sent the message or where it is destined, or even if
there's a real message involved or if its just random data being propagated for testing
purposes.

Assumptions
Some base assumptions are necessary to proceed in specifying the network so that
security and anonymity can be defined clearly. The first assumption is that the local
computer is secure and can be trusted. This means that there are no key loggers, virii
that disclose keys or corrupt the software, or other related faults. The second
assumption is that the cryptography used in the network cannot be practically
defeated. The quick laundry list of algorithms used includes AES256 in CBC mode,
ElGamal with 2048bit keys, DSA with 1024bit keys, and SHA256, in addition to any
transport level encryption protocols. The third and final assumption is that the user of
the system understands the implications of the security and anonymity constraints and
does not violate them. This requires user training so that neither private keys nor
identifying data are leaked.

Network Components
The I2P network is made up out of four key abstractions:

– Routers: the software responsible for the transparent delivery of messages between
destinations. They communicate with other routers to manage tunnels, distribute
network information, deliver messages, detect attacks, and detect failures.

– Destinations: the unique identifier of an end point in the network to which
applications can send messages and receive messages through. Client software
uses the Invisible Internet Client Protocol (I2CP) to communicate with a router,
providing proof of access to the destination's private key so that the router can
securely and anonymously accept messages targeting the destination.

– Tunnels: chains of routers collaborating temporarily to pass messages along a
fixed path. Messages sent to a tunnel's entry point (gateway) are piped down the
network of routers forming the tunnel along with verifying information to assure
that the data is altered along the way. In addition, the gateway encrypts
instructions to the last router in the tunnel (the end point) telling it how to handle
the message. The instructions can specify that a message should be delivered to
another router, a Destination, another tunnel, or handled locally, in which case
the end point consults a local mapping to determine what client to deliver that

InvisibleNet – www.invisiblenet.net Page 3/20

message to.

Outbound messages are sent through tunnels built facing away from the source
router towards no particular router in the network, along with encrypted
instructions specifying where the message should be sent next. This essentially
builds the network into a series of disjointed tunnels delivering messages to mobile
destinations.

– Network Database: a specialized high performance distributed database
containing the information necessary to let the network operate effectively.
Specifically, this includes the temporary leases of destinations to tunnel gateways
and the various pieces of information that routers publish about themselves (their
contact addresses, configuration, statistics, etc).

Protocol Scope
The Invisible Internet Network Protocol (I2NP) outlined here is only a part of how an
application can send messages over the network. The Invisible Internet Client
Protocol (I2CP)8 defines how client applications written in any language can
communicate with the network routers. In addition, various transport protocols define
the specifics of how data is passed from one router to another over the network. I2NP
does not specify or require any particular transport layer, allowing transport protocols
to work over TCP, Polling HTTP, SMTP+POP3/IMAP, UDP, among anything else
that can pass data. I2NP merely requires that they:

– Register a unique identifier for use in RouterAddress structures consisting of no
more than 32 UTF-8 characters.

– Define standard text based options that uniquely define a contact method (for
example “hostname” and “port” or “email address”) as usable in the
RouterAddress structure's set of options.

– Provide a means to reliably deliver a chunk of data, where the contents of any
particular chunk is delivered in order. However, different chunks of data do not
need to be delivered in order.

– Secure the chunks of data from alteration or disclosure (e.g. encrypt them and use
checksums).

– Enable the router to control the transport's bandwidth usage.

– Provide estimates for the latency and bandwidth associated with passing a chunk of
data.

– Provide a programmable interface suitable for integration with various routers.

Transports themselves can implement advanced features, such as steganography,
constant rate delivery, dummy message delivery, and may even run on top of existing
networks, such as mixminion, kazaa, gnunet, and freenet. Transports can even be
written to run over I2P itself, accessing it as a client and mixing the message through
other routers.

Sandwiched between I2CP and the various I2P transport protocols, I2NP manages the
routing and mixing of messages between routers, as well as the selection of what

8 http://wiki.invisiblenet.net/iip-wiki?I2P

InvisibleNet – www.invisiblenet.net Page 4/20

transports to use when communicating with a peer for which there are multiple
common transports supported.

Threat Model
I2P aims to operate in hostile environments, including against a global active adaptive
attacker with infinite resources available to them. This type of attacker can operate
internationally in any jurisdiction, actively participate in the network, as well as
refocus their efforts to explore potentially exploitive situations. For an analysis of the
performance and security of the I2NP, please see the evolving analysis9.

9 http://wiki.invisiblenet.net/iip-wiki?I2PSecurity

InvisibleNet – www.invisiblenet.net Page 5/20

2.Communication Scenarios
Outlined below are the different events and flows that occur within the I2NP. The
details of the contents of various messages are located below in section 4, and
common I2P data structures (shown like this) are located in the data structure spec10.

Active Scenarios

Router Starts Up
Each and every time the router starts up, it boots the Network Database by contacting
known peers and following the process described in the Network Database section
below. The first time the router starts up, it must generate its RouterIdentity
(containing various public keys as well as a Certificate) and be provided with seed
RouterInfo structures with reachable RouterAddresses to join the network through.

After booting up the Network Database, it publishes its RouterInfo structure into the
network database under the SHA256 of its RouterIdentity, as well as any LeaseSet
structures to be placed under the SHA256 of their associated Destinations.

If the router's RouterInfo does not contain reachable contact addresses (which is the
case if the new router choses to run over trusted links only), all attempts to contact the
router should be source routed through one of the trusted links published in the
RouterInfo structure as RouterSighting structures.

Router Leaves Network
When a router leaves the network, no activity needs to occur. The various routers
with references to the router should detect that it is unreachable and stop using it. The
router may want to update the Network Database with a RouterInfo structure
containing no RouterAddress or RouterSighting structures, as well as update any
associated RouterAddress to remove all Leases.

Destination Established a Session with a Router
When a Destination establishes a session with a router according to the Invisible
Internet Client Protocol (I2CP), it provides proof that the client has access to the
private key associated with the Destination. Based both on the router's
configuration and on the configuration properties provided during the session
establishment, the router then builds various inbound and outbound tunnels. After
these tunnels have been built, the router asks the client to authorize the inbound
tunnels by providing the gateways and tunnel identifiers to the client and then waits
for the client to provide the appropriate Lease structures. Once the router has them,
it publishes a LeaseSet to the Network Database keyed off the SHA256 of the
Destination.

Tunnel creation is a three step process. First, the controlling router selects a set of
known routers to participate in the tunnel. Next, the router contacts each of those
routers with a TunnelCreateMessage telling the router what its next hop should be,
among other configuration options, and offering a Certificate in exchange for
participating in the tunnel. These messages should be sent either through existing

10 http://wiki.invisiblenet.net/iip-wiki?I2P

InvisibleNet – www.invisiblenet.net Page 6/20

outbound tunnels or source routed through GarlicMessages and should include a
SourceRouteBlock on which replies should be sent. After the TunnelCreateMessage
is sent to each router, the controlling router waits for a reply from them with a
TunnelCreateStatusMessage before moving on to the next step. Prior to sending that
TunnelCreateStatusMessage reply, the participating router should make sure it is able
to reach the next step – perhaps even establishing a long lasting transport specific
connection. Finally, once all replies have been received, the tunnel is complete.

The end points and gateways for both inbound and outbound tunnels receive the
TunnelSessionKey, which is used for encrypting the DeliveryInstructions. All
participants in tunnels also receive a TunnelConfigurationSessionKey that must
accompany any further tunnel configuration message, and they also receive a
TunnelSigningPublicKey that is used to verify data in the
TunnelVerificationStructure, while only the gateway receives the
TunnelSigningPrivateKey for generating that signature.

Router Rebuilds Tunnels
Periodically, routers will want to update both their inbound and outbound tunnels.
This may be required if routers participating in the tunnel only agree to a limited time,
or it may be done for anonymity and security reasons, altering the overall network
traffic flow to the destination as well as providing different routers which an attacker
would have to compromise. Updating the tunnel has two or more steps. First, the
tunnel contacts the new routers that will participate in the tunnel by sending them each
a TunnelCreateMessage and waiting for a TunnelCreateStatusMessage in response. If
the gateway of the tunnel is not being replaced, the controlling router needs only to
then send a TunnelCreateMessage to the last router in the existing tunnel that will
remain as a part of the tunnel, directing it to forward messages to the new series of
routers, and then send a TunnelDestroyMessage to the routers no longer serving as a
part of the tunnel. However, if the gateway to an inbound tunnel is being replaced, the
router should request a new Lease from the client and update the Network Database
to contain the updated LeaseSet prior to sending the TunnelDestroyMessage.

Tunnel Fails
Periodically, the gateway of a tunnel may send a source routed message down the
tunnel. If the tunnel is an inbound tunnel, the router receiving it will take note of its
reception and consider the tunnel alive and well. If the tunnel is an outbound tunnel
(meaning the message was originated by the controlling router), the message will
either be wrapped in a source routed message directing the outbound end point to
forward the data back to the controlling router, or the message will be directed
towards an inbound tunnel for delivery to the controlling router. If a sufficient
number of these test messages fail to arrive within a satisfactory time, the controlling
router should rebuild the tunnel as described above.

Destination Ends a Session with a Router
Whenever a client ends a session with the router, the router should update the
Network Database to replace the old LeaseSet with one that does not contain these
Leases. In addition, the router may chose to destroy the tunnels with
TunnelDestroyMessages, though it may keep them around for reuse.

InvisibleNet – www.invisiblenet.net Page 7/20

Destination Sends a Message

Whenever a Destination wants to send a message to to another Destination, it
provides its local router with both the Destination structure and the raw bytes of the
message to be sent. The router then determines where to send it, delivers it through
outbound tunnels, instructing the end point to pass it along to the appropriate inbound
tunnel, where it is passed along again to that tunnel's end point and made available to
the target for reception. To understand fully, each step in the process must be
explained in detail.

– First, once the originating router receives the message and the Destination, it
attempts to find the LeaseSet associated with it as stored in the Network Database
under the key calculated by SHA256 of the Destination.

– The router then builds a GarlicMessage addressed to the SHA256 of the
PublicKey from the LeaseSet with the real data to be delivered. This
GarlicMessage contains at least one GarlicClove in which there are instructions to
deliver the clove's payload to the Destination. Additional cloves may be present,
and in fact, if the source router desires guaranteed delivery, it will include a clove
requesting source route delivery of a DeliveryStatusMessage back to itself. The
body of the GarlicMessage with all enclosed GarlicCloves is encrypted to the key
specified on the LeaseSet using the ElGamal+AES256 algorithm described in the
data structure spec.

– The router then selects one or more outbound tunnels through which the
GarlicMessage will be delivered.

– Then the router selects one or more of those Lease structures from the LeaseSet
and constructs a TunnelMessage along with DeliveryInstructions for the
outbound tunnel's end point to deliver the GarlicMessage to the inbound tunnel's
gateway router.

– The source router then passes the various TunnelMessages down the outbound

InvisibleNet – www.invisiblenet.net Page 8/20

tunnel to that tunnel's end point, where the instructions are decrypted, specifying
where the message should be delivered.

– At this point, the end point must determine how to contact the router specified in
the decrypted DeliveryInstructions, perhaps looking up RouterInfo or
LeaseSet structures in the Network Database, and maybe even delaying a
requested period of time before passing on the message.

– Once the tunnel end point has the data it needs to contact the inbound tunnel's
gateway router, it then attempts to contact it either directly through one of its public
RouterAddress or source routed through one of its published trusted peers. Over
this medium the tunnel end point delivers the GarlicMessage as it was wrapped by
the source router, along with the TunnelId.

– Once delivered to the inbound tunnel's gateway, the gateway builds a
TunnelMessage wrapping the GarlicMessage, encrypting a
DeliveryInstructions to specify local delivery upon arrival at the tunnel's end
point.

– Once the TunnelMessage is passed down to the end point in inbound tunnel, the
router opens the DeliveryInstructions, notes the request to deliver it locally,
and then proceeds to review the contents of the TunnelMessage's payload, which in
this case is a GarlicMessage addressed to the SHA256 of a LeaseSet that it has
published. It then decrypts the payload of the message with ElGamal + AES256.

– After opening up the GarlicMessage, it reviews each of the GarlicCloves and
processes them each. Cloves with DeliveryInstructions addressed to a local
Destination are delivered to the associated client application, other cloves asking
for local processing (e.g. Network Database messages or DeliveryStatusMessages)
are processed, and cloves asking for forwarding to other routers are passed off for
delivery.

There are several important points of note in this scenario. First, the source router
determines how many messages to send, how many outbound tunnels to send them
out, how many inbound tunnels to send them to, and how many cloves should include
DeliveryStatusMessage responses. The algorithm deciding these choices depends
both on the router implementation as well as the Destination's session configuration
options specified to balance the bandwidth, latency, reliability, and anonymity
constraints. Also, instead of using outbound tunnels to get the message to the inbound
tunnel's gateway, the router may decide to source router the message instead. If the
message id for a clove has already been processed or its expiration has passed, the
clove is dropped.

Passive Scenarios

Router Receives a Request for Tunnel Participation
When a router receives a request to participate in a tunnel via the
TunnelCreateMessage, it is given a set of requested configuration options, such as for
how long to operate, how many messages to let pass, how many messages or bytes to
let through in a time period, whether or not to generate dummy TunnelMessages, and
whether or not to reorder TunnelMessages prior to passing them on. In exchange, a
Certificate is included which may either have value or represent a proof of work so

InvisibleNet – www.invisiblenet.net Page 9/20

as to dissuade routers from consuming more than their share of the network's
resources. After deciding whether or not to accept the request to participate in the
tunnel, the router replies back with the included SourceRouteBlock with a
TunnelCreateStatusMessage wrapped in a GarlicMessage.

Router Receives a Garlic Message
Whenever a router receives a GarlicMessage, it checks the DeliveryInstructions
the to see if it is addressed to the local router, either through the SHA256 of the
router's RouterIdentity or as one of the keys attached to a locally originated
LeaseSet structure. If it is not local, it forwards the message on to the router whose
SHA256 of the RouterIdentity matches the address, perhaps by looking for its
address in the Network Database.

If it is local, it decrypts the payload of the message with ElGamal + AES25611 and
unwraps the garlic to determine where to send the sub-messages (GarlicCloves)
contained within, and if sufficient value is included with their Certificates, it
forwards them on accordingly. These GarlicCloves may or may not be unique, and
there may only be one of them. Each of them can request forwarding by means of a
DeliveryInstructions structure. In addition, each clove has its own payload and
may include a SourceRouteBlock that can be used to send back replies (for instance,
if the clove contains a TunnelCreateMessage, the clove's SourceRouteBlock will be
used to send back the TunnelCreateStatusMessage).

Router Rotates its Addresses
Periodically and after various events occur, such as a denial of service attack or an
instruction from the router's administrative interface, the router may decide to
abandon particular contact addresses completely. When this happens, the router
rebuilds a new RouterInfo structure and publishes it to the Network Database keyed
off the SHA256 of its RouterIdentity. If these new addresses should only be
delivered to trusted links, the router sends a TrustedPeerMessage directly to the
trusted peer containing the router's new RouterAddress structures.

Router Receives a Network Database Message
When a router receives one of the Network Database messages, it follows the
procedure specified in the Network Database section below after validating the
structures contained in the message.

11 For the structure and algorithm for ElGamal+AES256, see the data structures spec

InvisibleNet – www.invisiblenet.net Page 10/20

3.Network Database
The Network Database for I2NP is a distributed lookup and storage system for
handling only two data structures – RouterInfo and LeaseSet. These two structures
are keyed into the system under the SHA256 of the associated RouterIdentity and
Destination, respectively. The Network Database itself does not provide anonymity
or hide what it stores in any way – it simply aims to provide fast update and retrieval
time, as well as strong fault resistance. To achieve these aims, a modified Kademlia12

system is used.

Kademlia Variations
Except for a few properties outlined here, I2NP's Network Database is an
implementation of Kademlia. The differences are:

– A 256 bit key space is used rather than the standard 160 bit one, reflecting I2NP's
use of SHA256 instead of Kademlia's SHA1.

– Communication between Kademlia nodes is handled through the I2NP standard
technique of sending messages for the various remote procedure calls (RPCs)
rather than actually sending UDP or ICMP packets. The associated messages –
DatabasePing, DatabaseStore, DatabaseLookup, and DatabaseFindNearest,
correlating with the Kademlia ping, store, find_key, and find_node RPCs,
respectively – are described with the other I2NP messages below. Also, since
I2NP cannot assume bidirectional links, Kademlia replies are in their own
messages – DatabaseLookupReply and DatabaseFindNearestReply.

– Data stored in the Network Database is verified prior to being accepted or passed
on. The RouterInfo and LeaseSet structures must both be signed with verifiable
signatures and placed under the correct key (SHA256 of the RouterIdentity and
Destination, respectively). In addition, values clobber other values if their
version is greater than the one already known, but not if they are the same or an
older version, even if the signatures match.

– Data is not necessarily expired after 24 hours, data sources do not need to republish
daily, and individual routers do not need to republish local structures hourly.
However, routers may republish their structures periodically anyway, both to
improve their reliability and as network traffic filler.

– DatabaseFindNearest returns RouterInfo structures, not (IP, port number, node
ID) triples.

Modified Kademlia Protocol Summary

Key Closeness and Location
The measure of how “close” one key is to another is determined by the exclusive-or of
the bits in the key. Each router has a Kademlia “node id” (the SHA256 Hash of the
router's RouterIdentity) and as data is stored in the network, data is placed on the
routers where the node id is the closest to the key. In addition, data may be cached
along that path to improve future lookups.

12 http://citeseer.nj.nec.com/maymounkov02kademlia.html

InvisibleNet – www.invisiblenet.net Page 11/20

Network Database Initialization
When the router is installed and a new RouterIdentity is created, there must be at
least one reachable peer to which it sends a DatabaseFindNearest keyed off the
SHA256 of its own RouterIdentity and continues on, resending
DatabaseFindNearest messages to routers in each of the key spaces. In addition, as
soon as it is available, it inserts its own RouterInfo structure with a DatabaseStore
message.

Key Space Management
Each router maintains an ordered list of peers whose node id falls into various ranges
of keys (the keyspace), where each range is twice as “far away” from the current node
id as the previous. As necessary, each router issues a DatabaseFindNearest request for
random keys in those spaces to refresh them and uses an algorithm similar to a least
recently used queue to expunge keys as better ones are found.

Key Lookups
Key lookups are recursive requests to routers whose node id is closest to the key,
where responses either contain the value or they contain references to peers closer to
the key. In addition, once a key is found, the value is stored at the peer that the
current router would expect the key to be at if they requested it again. These lookups
do not necessarily operate serially and should instead have a small parallelization –
sending K requests out at once to the K closest peers to a key, and storing a found
result at the K closest peers.

Anonymity
Kademlia's use in I2NP is very specialized, not a general purpose data storage system.
Even if an attacker compromised all of the routers a particular router spoke with when
looking up a particular key, there is no reason to believe the request was due to
anything but a periodic refreshing of the keyspace using random keys. In addition,
DatabaseStore messages of LeaseSet structures can and should be delivered
indirectly – either through source routed GarlicMessages or through outbound tunnels
so that compromised nodes cannot determine the originator of that structure.

InvisibleNet – www.invisiblenet.net Page 12/20

4.Messages
All messages are serialized to begin with a 1 byte Integer specifying their type
(correlated with the types below).

Network Database Messages
Message: 0 (DatabasePing)

Description: This message is sent to a router containing a unique identifier and
the SHA256 of the RouterIdentity sending the message. If the
router is online, it should reply with a DatabasePing containing that
same unique identifier (and the SHA256 of its own
RouterIdentity).

Contents: 2 byte Integer id, SHA256 Hash of the sending router's
RouterIdentity

Responses: DatabasePing if the id is new

Notes:

Message: 1 (DatabaseStore)
Description: This message is sent directly to routers that should store a particular key/value

pair, and hence it contains the key for the database along with the value. The
DatabaseFindNearest message determines what routers should receive this
message.

Contents: SHA256 Hash as the key, 1 byte Integer specifying the type of data,
then the actual data

Responses: None

Notes: If the type of data is 0, the data is a RouterInfo, or if it is 1, the data is a
LeaseSet

Message: 2 (DatabaseLookup)
Description: This message is sent in parallel to routers where the SHA256 of their

RouterIdentity is closest to the key being looked up, where closeness is
defined as the XOR of the keys. The number of routers to whom the message is
sent in parallel is a tunable parameter. If any of the DatabaseLookupReply
responses contain the key, then the value is returned and no more
DatabaseLookups are performed, otherwise further requests are sent out to the
routers specified in the various DatabaseLookupReply messages. After finding
the value, the router may send a DatabaseStore message to the routers in its
routing table closest to the key so as to improve later lookups.

Contents: SHA256 Hash as the key, SHA256 Hash of the sending router's
RouterIdentity

Responses: DatabaseLookupReply

Notes:

InvisibleNet – www.invisiblenet.net Page 13/20

Message: 3 (DatabaseLookupReply)
Description: The DatabaseLookupReply either has the value requested or a set of

RouterInfo structures that the router responding would send the
DatabaseLookup to.

Contents: SHA256 Hash as the key, 1 byte Integer specifying the type of data
being returned, then a 1 byte Integer specifying the number of
RouterInfo structures follow, then either that many structures or
the value of the key.

Responses:
Notes: If the number of RouterInfo structures is 0, then the remainder of the reply

contains the value stored at the key, and if it is 1, then the type of data being
returned is ignored. The values for the type of data match the values specified in
the DatabaseStore message.

Message: 4 (DatabaseFindNearest)
Description: This message is sent in parallel to routers where the SHA256 of the

RouterIdentity is closest to the key space requested.

Contents: SHA256 Hash as the key, followed by the SHA256 Hash of the
requesting router's RouterIdentity.

Responses: DatabaseFindNearestReply

Notes:

Message: 5 (DatabaseFindNearestReply)
Description: This message replies to a DatabaseFindNearest with a set of RouterInfo

structures closest to the key requested.

Contents: SHA256 Hash as the key, followed by a 1 byte Integer specifying how
many RouterInfo structures follow, then those structures.

Responses:
Notes:

InvisibleNet – www.invisiblenet.net Page 14/20

Tunnel Related Messages
Message: 6 (TunnelCreateMessage)

Description: Request that a router participate in a tunnel, or update an existing router's
participation settings if the TunnelConfigurationSessionKey and TunnelId
matches the existing values.

Contents: - 1 byte Integer specifying what type of tunnel participant the
router should be (1 = gateway, 2 = endpoint, other #s are anything
else)

- If the type of participant is not 2, the SHA256 Hash of the
RouterIdentity acting as the next step in the tunnel follows

- The TunnelId

- A 4 byte Integer specifying for how many milliseconds the router
should participate in the tunnel, starting from the time this
message is received

- The TunnelConfigurationSessionKey unique to this participant in
the tunnel

- a 4 byte Integer specifying the maximum peak number of messages
sent per minute

- a 4 byte Integer specifying the maximum average number of
messages sent per minute

- a 4 byte Integer specifying the maximum peak number of bytes sent
per minute

- a 4 byte Integer specifying the maximum average number of bytes
sent per minute

- a 1 byte Integer containing various configuration flags. The
highest order bit specifies whether the gateway should send dummy
messages down the tunnel to meet the maximum average (true = 1),
and the next highest order bit specifies whether messages should be
reordered before passing them down the tunnel (true = 1). The
other bits are not yet defined.

- the TunnelSigningPublicKey

- if the type of participant is 1, the TunnelSigningPrivateKey
follows

- if the type of participant is 1 or 2, the TunnelSessionKey
follows

- a Certificate for participating in the tunnel

- a SourceRouteBlock with which the participant can send back their
TunnelCreateStatusMessage reply

Responses: TunnelCreateStatusMessage

Notes:

Message: 7 (TunnelCreateStatusMessage)
Description: The TunnelCreateStatusMessage is a reply to a TunnelCreateMessage,

containing the TunnelId and whether or not the router agrees to participate in
the tunnel. If it does not agree to participate, it also specifies whether it is being
rejected because the router is overloaded, the TunnelId is already in use on
that router, or the router cannot agree to the tunnel's requirements.

Contents: TunnelId followed by a 1 byte Integer specifying the participation
status

Responses:
Notes: The status is 0 for successfully created or updated, 1 for failed due to duplicate

TunnelIds , 2 for failed because the router is overloaded, 3 is failed because the
Certificate is invalid or insufficient, and other values for unspecified failures.

InvisibleNet – www.invisiblenet.net Page 15/20

Message: 8 (TunnelDestroyMessage)
Description: A TunnelDestroyMessage is sent to a router already participating in a tunnel,

specifying both the TunnelId to be destroyed as well as the
TunnelConfigurationSessionKey for that router. After receiving this
message, the router should no longer forward any messages along the tunnel and
may drop any related data.

Contents: TunnelId followed by the TunnelConfigurationSessionKey

Responses: TunnelCreateStatusMessage

Notes:

Message: 9 (TunnelMessage)
Description: Actual message for delivery down a tunnel

Contents: TunnelId followed by a 4 byte Integer specifying the size of the
payload, then that many bytes. If the TunnelMessage is being sent
to a gateway then that is all that is necessary, otherwise if it is
being passed down the tunnel, a TunnelVerificationStructure follows
and then the DeliveryInstructions encrypted by the TunnelSessionKey
with AES256

Responses:
Notes: The AES256 implementation details are described in the data structures spec,

using the first 16 bytes of the SHA256 from the TunnelId as the AES
initialization vector (IV).

InvisibleNet – www.invisiblenet.net Page 16/20

Miscellaneous Messages
Message: 10 (DeliveryStatusMessage)

Description: Contains an acknowledgment that a message was delivered successfully.

Contents: 4 byte Integer representing the message id that was received,
followed by the Date it was received

Responses:
Notes: May be contained in a GarlicClove for automated acknowledgments, but it can

be sent manually.

Message: 11 (GarlicMessage)
Description: Contains an encrypted set of GarlicCloves which each in turn can be fully

deliverable messages

Contents: After decryption, the message contains: 1 byte Integer specifying
how many GarlicCloves follow, then those cloves, then a
Certificate, then a 4 byte Integer serving as a message id, then
the expiration Date for the message, then a 2 byte Integer
specifying how many SessionTags follow, then that many SessionTags

Responses:
Notes: The GarlicMessage is encrypted with ElGamal+AES256 as outlined in the data

structure spec.

If the message ID is a duplicate or the expiration date has passed, the clove is
dropped. Also, data contained within the cloves can be any type of message.

Message: 12 (TrustedPeerMessage)
Description: A message passed directly to a trusted peer to request or respond to a request for

authorization to have all messages targeting a particular router sent through the
peer.

Contents: RouterInfo with private data, followed by a RouterSighting
structure

Responses: TrustedPeerMessage

Notes: If the receiving router agrees to act as the trusted peer of the requester, it signs
the RouterSighting and sends back a TrustedPeerMessage

InvisibleNet – www.invisiblenet.net Page 17/20

5.Performance Monitoring and Tuning
To facilitate the development of the router software so as to improve its performance,
it is useful to have a mechanism to monitor the performance and operation of the
deployed routers without violating the security of any of the routers or destinations in
use. Within the RouterInfo structure itself, there is a set of mappings that can be
populated with up to approximately 64KB of data – it is through this that routers may
chose to broadcast some performance and operational data. In addition to allowing
routers to chose not to include such information, information contained therein is
unreliable and may be maliciously incorrect, so no overall performance of the system
can be known except with a probabilistic margin of error.

Over time, as new statistics and metrics become interesting, these can be included in
the RouterInfo structure and old ones removed. Example statistics and metrics
include:

– average number of messages passed per hour

– average size of messages passed per hour

– average latency contacting peers

– total number of known peers

– total number of reachable peers

– average number of inbound tunnels created per destination

– average number of outbound tunnels created per destination

– average length of inbound tunnels

– average length of outbound tunnels

– total number of tunnels participated in

– network database stats

– ping times to network lighthouses [google.com, odci.gov, etc]

– current router bandwidth limits

InvisibleNet – www.invisiblenet.net Page 18/20

6.Implementation Details
A significant amount of the operation of the network is left up to individual router
implementations – I2NP simply allows them to interoperate cleanly and consistently.
The following points outline some specific implementation details explicitly left open
to interpretation.

– Peer and Tunnel Selection Algorithm
Routers need to choose other routers for a variety of reasons – for tunnel participation,
for source routing, for network database queries, and for trusted peers.

The algorithm determining what routers should participate in a tunnel should attempt
to minimize the likelihood of an attacker compromising all of the nodes in the tunnel,
or of the tunnel failing, so routers may want to keep historical performance
information about their peers, periodically check them with source routed messages,
and attempt to include a large variety of routers in the set to help minimize the
likelihood of an attacker expending a large amount of resources to create an attractive
honey pot.

The algorithm determining what routers should be used for source routing should
operate along similar lines.

The network database query algorithms are defined by the network database
implementation and should optimize the distribution for overall network performance.

Trusted peers should be explicitly chosen, though the duration for which a peer should
be trusted should take into consideration the risk of using it, the security afforded by
the trusted link, and the likelihood of an attacker compromising the trusted node prior
to the trust being revoked.

– Peer and Destination Routing Table Size
Each router in the network is in control of how many routers they keep in contact with
or maintain historical performance information for. At the minimum, each router
should maintain the router information for as many routers as required by the network
database (approximately log(number of routers in the network)), but may want to
include significantly more than that to improve reliability and to provide more options
for the various peer selection algorithms.

– Network Database Caching and Bandwidth Parameters
Similar to the routing table algorithm, the network database caching algorithm will
want to balance the performance increase of looking up keys on the filesystem versus
requesting them from other hosts against the storage space involved. Also, the
algorithm used to determine how many peers to send network database messages to in
parallel should consider the bandwidth available as well the latency required for this
particular message (whether it is a client requested lookup, a periodic refresh, a peer
response, or another scenario).

– Quantity and Style of Garlic Messages
The use of garlic routed messages leaves open a vast array of options for their
delivery, such as whether to include redundant cloves routed through different
destinations – improving their reliability, whether to group multiple messages for
delivery at once – helping deter traffic analysis, whether to include reply blocks –

InvisibleNet – www.invisiblenet.net Page 19/20

allowing recipients to respond, and whether to include delivery status messages –
helping to automate the verification of guaranteed message delivery.

– Performance Monitoring and Publishing Style
The determination of whether to publish statistics – and even whether those statistics
should be completely true, largely true, or complete fabrications – is up to the router
implementation. In addition, how each individual router retrieves those statistics and
whether they use them in their peer selection algorithms is an entirely implementation
specific decision.

– Certificate Acceptance and Generation Policy
Certificates are attached to a wide variety of messages and structures, and the
algorithms, minimums, and generation/selection policies for each can be tuned to
address denial of service attacks and perhaps to explore the effectiveness of an
economic model for the network.

– Detecting and Correcting Poor Network Integration
How frequently and with what mechanism routers send messages out into the network
to test peers and tunnels is entirely up to the router implementation.

– Detecting and Responding to Flooding (DoS and DDoS)
Routers who receive a large amount of messages from inbound tunnels but are still
unable to successfully send test messages through may want to consider building
additional tunnels. Routers may also refuse to respond to peers who send excessive
network database messages and may even be able to make use of transport level
detection techniques to attempt to cut off abusive peers, or at least report the abuse to
appropriate clients.

InvisibleNet – www.invisiblenet.net Page 20/20

